CDN DNS 原理概述
CDN 原理
CDN(Content Delivery Network,内容分发网络)将源站的内容发布到接近用户的网络“边缘”,用户可以就近获取所需数据,不仅降低了网络的拥塞状况、提高请求的响应速度,也能够减少源站的负载压力。
很多同学都比较熟悉 CDN 的作用和功能,但是可能也会像我之前一样,对 CDN 的原理不是十分了解。所以本文旨在对 CDN 的工作原理和核心组件进行简要的描述。
1. 访问源站的过程
为了更加清楚地展示 CDN 的原理,我们首先回顾一下不使用缓存直接到源站请求数据的过程:

如上图所示,如果要访问的网站名为:”join.qq.com”,客户端首先会在本机的 hosts 文件和 hosts 缓存中查找该域名对应的 IP 地址;如果本机中没有此信息,则会到我们的本地DNS
进行询问该域名对应的 IP 地址;如果本地DNS中仍然没有该域名的 IP 信息时,则会由本地 DNS 依次向根DNS
、顶级域DNS
、权威DNS
进行询问,最终本地DNS
将 IP 地址发送给客户端。客户端通过 IP 地址向远程的源站服务器发出 HTTP 请求并获取相应的数据内容。
以上是通过 DNS 的迭代解析
模式获取域名对应的 IP 地址并发送 HTTP 请求的过程。源站的提供商通过配置权威 DNS 将源站的域名与提供服务的服务器主机进行绑定,使客户端通过 DNS 服务可以顺利地获取源站域名对应的 IP 地址并通过 IP 地址与源站进行通信。
DNS 的记录类型
为了方便后续的讨论,需要了解 DNS 是如何对查询请求进行应答的。
在 DNS 系统中,最常见的资源记录方式是 Internet 类记录,该记录由包含4个字段的数据构成:Name、Value、Type、TTL。其中 Name 和 Value 可以理解为一对键值对,但是其具体含义取决于 Type 的类型,TTL 记录了该条记录应当从缓存中删除的时间。在资源记录的类型中中,最为常见且重要的类型 Type 主要有:
A 记录(Address)
A 记录用于描述目标域名到 IP 地址的映射关系,将目标域名与 A 记录的 Name 字段进行匹配,将成功匹配的记录的 Value 字段的内容(IP 地址)输出到 DNS 回应报文中。
NS 记录(Name Server)
NS 记录用于描述目标域名到负责解析该域名的 DNS 的映射关系,根据目标域名对 NS 记录的 Name 字段进行匹配,将成功匹配的记录的 Value 字段(负责解析目标域名的 DNS 的 IP 地址)输出到 DNS 回应报文中。
CNAME 记录
CNAME 记录用于描述目的域名和别名的对应关系,如果说 A 记录可以将目标域名转换为对应主机的 IP 地址,那么 CNAME 记录则可以将一个域名(别名)转换为另一个域名,如果多条 CNAME 记录指向同一个域名,则可以将多个不同的域名的请求指向同一台服务器主机。并且,CNAME 记录通常还对应了一条 A 记录,用于提供被转换的域名的 IP 地址。
2. 通过 CDN 获取缓存内容的过程
在上一章节中主要介绍了通过 DNS 服务直接访问源站的请求响应过程。与其不同的是,CDN 将我们对源站的请求导向了距离用户较近的缓存节点,而非源站。
如图所示是通过 CDN 进行请求响应的过程图。通过图中可以看出,在 DNS 解析域名时新增了一个全局负载均衡系统(GSLB)
,GSLB 的主要功能是根据用户的本地 DNS 的 IP 地址判断用户的位置,筛选出距离用户较近的本地负载均衡系统(SLB)
,并将该 SLB 的 IP 地址作为结果返回给本地 DNS。SLB 主要负责判断缓存服务器集群
中是否包含用户请求的资源数据,如果缓存服务器中存在请求的资源,则根据缓存服务器集群中节点的健康程度、负载量、连接数等因素筛选出最优的缓存节点,并将 HTTP 请求重定向到最优的缓存节点上。

为了更清晰地说明 CDN 的工作原理,下面以客户端发起对”join.qq.com/video.php”的 HTTP 请求为例进行说明:
- 用户发起对”join.qq.com/video.php”的 HTTP 请求,首先需要通过本地 DNS 通过”迭代解析”的方式获取域名”join.qq.com”的 IP 地址;
- 如果本地 DNS 的缓存中没有该域名的记录,则向
根DNS
发送 DNS 查询报文; 根DNS
发现域名的前缀为”com”,则给出负责解析com
的顶级DNS
的 IP 地址;- 本地 DNS 向
顶级DNS
发送 DNS 查询报文; 顶级DNS
发现域名的前缀为”qq.com”,在本地记录中查找负责该前缀的权威DNS
的 IP 地址并进行回复;- 本地 DNS 向
权威DNS
发送 DNS 查询报文; - 权威 DNS 查找到一条 NAME 字段为”join.qq.com”的
CNAME记录
(由服务提供者配置),该记录的 Value 字段为”join.qq.cdn.com”;并且还找到另一条 NAME 字段为”join.qq.cdn.com”的 A 记录,该记录的 Value 字段为 GSLB 的 IP 地址; - 本地 DNS 向 GSLB 发送 DNS 查询报文;
- GSLB 根据
本地DNS
的 IP 地址判断用户的大致位置为深圳,筛选出位于华南地区且综合考量最优的 SLB 的 IP 地址填入 DNS 回应报文,作为 DNS 查询的最终结果; - 本地 DNS 回复客户端的 DNS 请求,将上一步的 IP 地址作为最终结果回复给客户端;
- 客户端根据 IP 地址向 SLB 发送 HTTP 请求:”join.qq.com/video.php“;
- SLB 综合考虑缓存服务器集群中各个节点的资源限制条件、健康度、负载情况等因素,筛选出最优的缓存节点后回应客户端的 HTTP 请求(状态码为302,重定向地址为最优缓存节点的 IP 地址);
- 客户端接收到 SLB 的 HTTP 回复后,重定向到该缓存节点上;
- 缓存节点判断请求的资源是否存在、过期,将缓存的资源直接回复给客户端,否则到源站进行数据更新再回复。
其中较为关键的步骤为 6~9,与普通的 DNS 过程不同的是,这里需要服务提供者(源站)配置它在其权威 DNS 中的记录,将直接指向源站的 A 记录修改为一条 CNAME 记录及其对应的 A 记录,CNAME 记录将目标域名转换为 GSLB 的别名,A 记录又将该别名转换为 GSLB 的 IP 地址。通过这一系列的操作,将解析源站的目标域名的权力交给了 GSLB,以致于 GSLB 可以根据地理位置等信息将用户的请求引导至距离其最近的 “ 缓存节点 “,减缓了源站的负载压力和网络拥塞。
以上主要介绍了目前 CDN 中最为常见的工作方式,这种工作方式利用 CNAME 将域名和目标 IP 之间进行解耦,将目标 IP 的解析权下放到 GSLB 中,方便实现更多自定义的功能,是一种更加灵活的方式。
DNS 原理
参考文章:阮一峰
DNS 是互联网核心协议之一。不管是上网浏览,还是编程开发,都需要了解一点它的知识。
本文详细介绍DNS的原理,以及如何运用工具软件观察它的运作。我的目标是,读完此文后,你就能完全理解DNS。
1 DNS 是什么?
DNS (Domain Name System) 的作用非常简单,就是根据域名查出IP地址。你可以把它想象成一本巨大的电话本。
举例来说,如果你要访问域名math.stackexchange.com
,首先要通过DNS查出它的IP地址是151.101.129.69
。
如果你不清楚为什么一定要查出IP地址,才能进行网络通信,建议先阅读《互联网协议入门》。
2 查询过程
虽然只需要返回一个 IP 地址,但是 DNS 的查询过程非常复杂,分成多个步骤。
工具软件dig
可以显示整个查询过程。
$ dig math.stackexchange.com
上面的命令会输出六段信息。
第一段是查询参数和统计。
第二段是查询内容。
上面结果表示,查询域名math.stackexchange.com
的A
记录,A
是address的缩写。
第三段是DNS服务器的答复。
上面结果显示,math.stackexchange.com
有四个A
记录,即四个IP地址。600
是TTL值(Time to live 的缩写),表示缓存时间,即600秒之内不用重新查询。
第四段显示stackexchange.com
的NS记录(Name Server的缩写),即哪些服务器负责管理stackexchange.com
的DNS记录。
上面结果显示stackexchange.com
共有四条NS记录,即四个域名服务器,向其中任一台查询就能知道math.stackexchange.com
的IP地址是什么。
第五段是上面四个域名服务器的IP地址,这是随着前一段一起返回的。
第六段是DNS服务器的一些传输信息。

上面结果显示,本机的DNS服务器是192.168.1.253
,查询端口是53(DNS服务器的默认端口),以及回应长度是305字节。
如果不想看到这么多内容,可以使用+short
参数。
$ dig +short math.stackexchange.com
151.101.129.69
151.101.65.69
151.101.193.69
151.101.1.69
上面命令只返回math.stackexchange.com
对应的4个IP地址(即A
记录)。
3 DNS服务器
下面我们根据前面这个例子,一步步还原,本机到底怎么得到域名math.stackexchange.com
的IP地址。
首先,本机一定要知道DNS服务器的IP地址,否则上不了网。通过DNS服务器,才能知道某个域名的IP地址到底是什么。
DNS服务器的IP地址,有可能是动态的,每次上网时由网关分配,这叫做DHCP机制;也有可能是事先指定的固定地址。Linux系统里面,DNS服务器的IP地址保存在/etc/resolv.conf
文件。
上例的DNS服务器是192.168.1.253
,这是一个内网地址。有一些公网的DNS服务器,也可以使用,其中最有名的就是Google的8.8.8.8
和Level 3的4.2.2.2
。
本机只向自己的DNS服务器查询,dig
命令有一个@
参数,显示向其他DNS服务器查询的结果。
$ dig @4.2.2.2 math.stackexchange.com
上面命令指定向DNS服务器4.2.2.2
查询。
4 域名的层级
DNS服务器怎么会知道每个域名的IP地址呢?答案是分级查询。
请仔细看前面的例子,每个域名的尾部都多了一个点。
比如,域名math.stackexchange.com
显示为math.stackexchange.com.
。这不是疏忽,而是所有域名的尾部,实际上都有一个根域名。
举例来说,www.example.com
真正的域名是www.example.com.root
,简写为www.example.com.
。因为,根域名.root
对于所有域名都是一样的,所以平时是省略的。
根域名的下一级,叫做”顶级域名”(top-level domain,缩写为TLD),比如.com
、.net
;再下一级叫做”次级域名”(second-level domain,缩写为SLD),比如www.example.com
里面的.example
,这一级域名是用户可以注册的;再下一级是主机名(host),比如www.example.com
里面的www
,又称为”三级域名”,这是用户在自己的域里面为服务器分配的名称,是用户可以任意分配的。
总结一下,域名的层级结构如下。
主机名.次级域名.顶级域名.根域名
# 即
host.sld.tld.root
5 根域名服务器
DNS服务器根据域名的层级,进行分级查询。
需要明确的是,每一级域名都有自己的NS记录,NS记录指向该级域名的域名服务器。这些服务器知道下一级域名的各种记录。
所谓”分级查询”,就是从根域名开始,依次查询每一级域名的NS记录,直到查到最终的IP地址,过程大致如下。
- 从”根域名服务器”查到”顶级域名服务器”的NS记录和A记录(IP地址)
- 从”顶级域名服务器”查到”次级域名服务器”的NS记录和A记录(IP地址)
- 从”次级域名服务器”查出”主机名”的IP地址
仔细看上面的过程,你可能发现了,没有提到DNS服务器怎么知道”根域名服务器”的IP地址。回答是”根域名服务器”的NS记录和IP地址一般是不会变化的,所以内置在DNS服务器里面。
下面是内置的根域名服务器IP地址的一个例子。

上面列表中,列出了根域名(.root
)的三条NS记录A.ROOT-SERVERS.NET
、B.ROOT-SERVERS.NET
和C.ROOT-SERVERS.NET
,以及它们的IP地址(即A
记录)198.41.0.4
、192.228.79.201
、192.33.4.12
。
另外,可以看到所有记录的TTL值是3600000秒,相当于1000小时。也就是说,每1000小时才查询一次根域名服务器的列表。
目前,世界上一共有十三组根域名服务器,从A.ROOT-SERVERS.NET
一直到M.ROOT-SERVERS.NET
。
6 分级查询的实例
dig
命令的+trace
参数可以显示DNS的整个分级查询过程。
$ dig +trace math.stackexchange.com
上面命令的第一段列出根域名.
的所有NS记录,即所有根域名服务器。

根据内置的根域名服务器IP地址,DNS服务器向所有这些IP地址发出查询请求,询问math.stackexchange.com
的顶级域名服务器com.
的NS记录。最先回复的根域名服务器将被缓存,以后只向这台服务器发请求。
接着是第二段。

上面结果显示.com
域名的13条NS记录,同时返回的还有每一条记录对应的IP地址。
然后,DNS服务器向这些顶级域名服务器发出查询请求,询问math.stackexchange.com
的次级域名stackexchange.com
的NS记录。

上面结果显示stackexchange.com
有四条NS记录,同时返回的还有每一条NS记录对应的IP地址。
然后,DNS服务器向上面这四台NS服务器查询math.stackexchange.com
的主机名。

上面结果显示,math.stackexchange.com
有4条A
记录,即这四个IP地址都可以访问到网站。并且还显示,最先返回结果的NS服务器是ns-463.awsdns-57.com
,IP地址为205.251.193.207
。
7 NS 记录的查询
dig
命令可以单独查看每一级域名的NS记录。
$ dig ns com
$ dig ns stackexchange.com
+short
参数可以显示简化的结果。
$ dig +short ns com
$ dig +short ns stackexchange.com
8 DNS的记录类型
域名与IP之间的对应关系,称为”记录”(record)。根据使用场景,”记录”可以分成不同的类型(type),前面已经看到了有A
记录和NS
记录。
常见的DNS记录类型如下。
(1) A
:地址记录(Address),返回域名指向的IP地址。
(2) NS
:域名服务器记录(Name Server),返回保存下一级域名信息的服务器地址。该记录只能设置为域名,不能设置为IP地址。
(3)MX
:邮件记录(Mail eXchange),返回接收电子邮件的服务器地址。
(4)CNAME
:规范名称记录(Canonical Name),返回另一个域名,即当前查询的域名是另一个域名的跳转,详见下文。
(5)PTR
:逆向查询记录(Pointer Record),只用于从IP地址查询域名,详见下文。
一般来说,为了服务的安全可靠,至少应该有两条NS
记录,而A
记录和MX
记录也可以有多条,这样就提供了服务的冗余性,防止出现单点失败。
CNAME
记录主要用于域名的内部跳转,为服务器配置提供灵活性,用户感知不到。举例来说,facebook.github.io
这个域名就是一个CNAME
记录。
$ dig facebook.github.io
...
;; ANSWER SECTION:
facebook.github.io. 3370 IN CNAME github.map.fastly.net.
github.map.fastly.net. 600 IN A 103.245.222.133
上面结果显示,facebook.github.io
的CNAME记录指向github.map.fastly.net
。也就是说,用户查询facebook.github.io
的时候,实际上返回的是github.map.fastly.net
的IP地址。这样的好处是,变更服务器IP地址的时候,只要修改github.map.fastly.net
这个域名就可以了,用户的facebook.github.io
域名不用修改。
由于CNAME
记录就是一个替换,所以域名一旦设置CNAME
记录以后,就不能再设置其他记录了(比如A
记录和MX
记录),这是为了防止产生冲突。举例来说,foo.com
指向bar.com
,而两个域名各有自己的MX
记录,如果两者不一致,就会产生问题。由于顶级域名通常要设置MX
记录,所以一般不允许用户对顶级域名设置CNAME
记录。
PTR
记录用于从IP地址反查域名。dig
命令的-x
参数用于查询PTR
记录。
$ dig -x 192.30.252.153
...
;; ANSWER SECTION:
153.252.30.192.in-addr.arpa. 3600 IN PTR pages.github.com.
上面结果显示,192.30.252.153
这台服务器的域名是pages.github.com
。
逆向查询的一个应用,是可以防止垃圾邮件,即验证发送邮件的IP地址,是否真的有它所声称的域名。
dig
命令可以查看指定的记录类型。
$ dig a github.com
$ dig ns github.com
$ dig mx github.com
9 其他DNS工具
除了dig
,还有一些其他小工具也可以使用。
(1)host 命令
host
命令可以看作dig
命令的简化版本,返回当前请求域名的各种记录。
$ host github.com
github.com has address 192.30.252.121
github.com mail is handled by 5 ALT2.ASPMX.L.GOOGLE.COM.
github.com mail is handled by 10 ALT4.ASPMX.L.GOOGLE.COM.
github.com mail is handled by 10 ALT3.ASPMX.L.GOOGLE.COM.
github.com mail is handled by 5 ALT1.ASPMX.L.GOOGLE.COM.
github.com mail is handled by 1 ASPMX.L.GOOGLE.COM.
$ host facebook.github.com
facebook.github.com is an alias for github.map.fastly.net.
github.map.fastly.net has address 103.245.222.133
host
命令也可以用于逆向查询,即从IP地址查询域名,等同于dig -x <ip>
。
$ host 192.30.252.153
153.252.30.192.in-addr.arpa domain name pointer pages.github.com.
(2)nslookup 命令
nslookup
命令用于互动式地查询域名记录。
$ nslookup
> facebook.github.io
Server: 192.168.1.253
Address: 192.168.1.253#53
Non-authoritative answer:
facebook.github.io canonical name = github.map.fastly.net.
Name: github.map.fastly.net
Address: 103.245.222.133
>
(3)whois 命令
whois
命令用来查看域名的注册情况。
$ whois github.com
10 参考链接
- DNS: The Good Parts, by Pete Keen
- DNS 101, by Mark McDonnell